Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Free, publicly-accessible full text available July 1, 2026
- 
            Abstract Additive friction stir deposition (AFSD) is a novel additive manufacturing technique that enables the fabrication of components in the solid state. Given the benefits of AFSD, understanding the behavior of various feedstock materials after undergoing the AFSD process is crucial for optimizing their performance in structural applications. This study aims to evaluate the effects of AFSD on an Al–Mg alloy, Al5086, comparing it to its initial H32 condition to assess the changes in mechanical properties, microstructure, corrosion resistance, microhardness, and electrical conductivity. Tensile testing showed a 23% reduction in yield strength for as-deposited samples, while ultimate tensile strength remained comparable to the feedstock. Ductility improved significantly, with elongation to failure increasing by 77%, attributed to grain refinement and dynamic recovery. Microhardness decreased by 16% in lower layers due to thermal exposure, but electrical conductivity remained stable, indicating minimal solute atom redistribution. The Nitric Acid Mass Loss Test (NAMLT) revealed a 245% increase in corrosion rate for the AFSD material, linked to the higher density of grain boundaries acting as pathways for corrosion. These findings highlight AFSD’s potential for improving ductility and formability. However, they underscore the need for optimization to reduce corrosion susceptibility and address mechanical strength trade-offs. Future work should focus on fine-tuning process parameters or implementing post-treatment methods to enhance corrosion and mechanical performance.more » « lessFree, publicly-accessible full text available April 5, 2026
- 
            Free, publicly-accessible full text available February 1, 2026
- 
            Abstract Additive Friction stir deposition (AFSD) has been extensively utilized for processing Al alloys. The properties of the Al depositions under as-fabricated state, including mechanical strength and corrosion resistance, are typically inferior compared to the base material, especially for heat-treatable alloys. In this research, multilayers of Al7075 composites, reinforced by ceramic particles, were processed by AFSD to evaluate the effect of using feedstock materials containing reinforcing particles on the properties of the deposition. For comparison, a bare Al7075 part was also processed by AFSD under the same conditions. The results of mechanical testing revealed a significant reduction in the microhardness, tensile strength and compression stress of the bare alloy after deposition. However, the composite deposition exhibited only a slight decrease in the properties compared to its feedstock material. Additionally, the corrosion resistance of the composite enhanced after AFSD, in contrast to the bare alloy, where the corrosion resistance deteriorated. Microstructural analysis showed a uniform distribution of the reinforcing particles in the matrix for the deposition, closely resembling that of the feedstock composite. This, along with grain refinement and minimal change in precipitates, were the reasons for the minimum changes in mechanical properties, as well as the improvement in corrosion resistance.more » « less
- 
            Free, publicly-accessible full text available November 1, 2025
- 
            This review sets out to investigate the detrimental impacts of hydrogen gas (H2) on critical boiler components and provide appropriate state-of-the-art mitigation measures and future research directions to advance its use in industrial boiler operations. Specifically, the study focused on hydrogen embrittlement (HE) and high-temperature hydrogen attack (HTHA) and their effects on boiler components. The study provided a fundamental understanding of the evolution of these damage mechanisms in materials and their potential impact on critical boiler components in different operational contexts. Subsequently, the review highlighted general and specific mitigation measures, hydrogen-compatible materials (such as single-crystal PWA 1480E, Inconel 625, and Hastelloy X), and hydrogen barrier coatings (such as TiAlN) for mitigating potential hydrogen-induced damages in critical boiler components. This study also identified strategic material selection approaches and advanced approaches based on computational modeling (such as phase-field modeling) and data-driven machine learning models that could be leveraged to mitigate potential equipment failures due to HE and HTHA under elevated H2 conditions. Finally, future research directions were outlined to facilitate future implementation of mitigation measures, material selection studies, and advanced approaches to promote the extensive and sustainable use of H2 in industrial boiler operations.more » « less
- 
            Additive friction stir deposition (AFS-D) is considered a productive method of additive manufacturing (AM) due to its ability to produce dense mechanical parts at a faster deposition rate compared to other AM methods. Al6061 alloy finds extensive application in aerospace and nuclear engineering; nevertheless, exposure to radiation or high-energy particles over time tends to deteriorate their mechanical performance. However, the effect of radiation on the components manufactured using the AFS-D method is still unexamined. In this work, samples from the as-fabricated Al6061 alloy, by AFS-D, and the Al6061 feedstock rod were irradiated with He+ ions to 10 dpa at ambient temperature. The microstructural and mechanical changes induced by irradiation of He+ were examined using a scanning electron microscope (SEM), energy-dispersive X-ray spectroscopy (EDS), transmission electron microscopy (TEM), and nanoindentation. This study demonstrates that, at 10 dpa of irradiation damage, the feedstock Al6061 produced a bigger size of He bubbles than the AFS-D Al6061. Nanoindentation analysis revealed that both the feedstock Al6061 and AFS-D Al6061 samples have experienced radiation-induced hardening. These studies provide a valuable understanding of the microstructural and mechanical performance of AFS-D materials in radiation environments, offering essential data for the selection of materials and processing methods for potential application in aerospace and nuclear engineering.more » « less
- 
            Solid-state additive friction stir deposition (AFSD) is a thermomechanical-based additive manufacturing technique. For this study, AFSD was utilized to produce aluminum alloy 6061 (AA6061) blocks with varying layer thicknesses (1 mm, 2 mm, and 3 mm). The mechanical properties were assessed through uniaxial tensile tests and Vickers microhardness measurement, and statistical analysis was employed to investigate differences among data groups. The results revealed that the deposition layer thickness influences tensile properties in the building (Z) direction, while the properties in the X and Y directions showed minor differences across the three AFSD blocks. Furthermore, variations in tensile properties were observed depending on the sample orientation in the AFSD blocks and its depth-wise position in the part in the building direction. The microhardness values decreased non-linearly along the building direction, spread across the width of the part’s cross-section, and highlighted that the deposition layer thickness significantly affects this property. The 1 mm block exhibited lower average microhardness values than the 2 mm and 3 mm blocks. The temperature histories and dynamic heat treatment are influenced by the deposition layer thickness and depend on the location of the point being studied in the part, resulting in variations in the microstructure and mechanical properties along the building direction and across the part’s width.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
